Article
AI
Attention
Culture
5 min read

Will AI’s attentions amplify or suffocate us?

Keeping attention on the right things has always been a problem.

Mark is a research mathematician who writes on ethics, human identity and the nature of intelligence.

A cute-looking robot with big eyes stares up at the viewer.
Robots - always cuter than AI.
Alex Knight on Unsplash.

Taking inspiration from human attention has made AI vastly more powerful. Can this focus our minds on why attention really matters? 

Artificial intelligence has been developing at a dizzying rate. Chatbots like ChatGPT and Copilot can automate everyday tasks and can effortlessly summarise information. Photorealistic images and videos can be generated from a couple of words and medical AI promises to revolutionise both drug discovery and healthcare. The technology (or at least the hype around it) gives an impression of boundless acceleration. 

So far, 2025 has been the year AI has become a real big-ticket political item. The new Trump administration has promised half a trillion dollars for AI infrastructure and UK prime minister Keir Starmer plans to ‘turbocharge’ AI in the UK. Predictions of our future with this new technology range from doom-laden apocalypse to techno-utopian superabundance. The only certainty is that it will lead to dramatic personal and social change. 

This technological impact feels even more dramatic given the relative simplicity of its components. Huge volumes of text, image and videos are converted into vast arrays of numbers. These grids are then pushed through repeated processes of addition, multiplication and comparison. As more data is fed into this process, the numbers (or weights) in the system are updated and the AI ‘learns’ from the data. With enough data, meaningful relationships between words are internalised and the model becomes capable of generating useful answers to questions. 

So why have these algorithms become so much more powerful over the past few years? One major driver has been to take inspiration from human attention. An ‘attention mechanism’ allows very distant parts of texts or images to be associated together. This means that when processing a passage of conversation in a novel, the system is able to take cues on the mood of the characters from earlier in the chapter. This ability to attend to the broader context of the text has allowed the success of the current wave of ‘large language models’ or ‘generative AI’. In fact, these models with the technical name ‘Transformer’ were developed by removing other features and concentrating only on the attention mechanisms. This was first published in the memorably named ‘Attention is All You Need’ paper written by scientists working at Google in 2017. 

If you’re wondering whether this machine replication of human attention has much to do with the real thing, you might be right to be sceptical. That said, this attention-imitating technology has profound effects on how we attend to the world. On the one hand, it has shown the ability to focus and amplify our attention, but on the other, to distract and suffocate it. 

Attention is a moral act, directed towards care for others.

A radiologist acts with professional care for her patients. Armed with a lifetime of knowledge and expertise, she diligently checks scans for evidence of malignant tumours. Using new AI tools can amplify her expertise and attention. These can automatically detect suspicious patterns in the image including very fine detail that a human eye could miss. These additional pairs of eyes can free her professional attention to other aspects of the scan or other aspects of the job. 

Meanwhile, a government acts with obligations to keep its spending down. It decides to automate welfare claim handling using a “state of the art” AI system. The system flags more claimants as being overpaid than the human employees used to. The politicians and senior bureaucrats congratulate themselves on the system’s efficiency and they resolve to extend it to other types of payments. Meanwhile, hundreds of thousands are being forced to pay non-existent debts. With echoes of the British Post Office Horizon Scandal, the 2017-2020 the Australian Robo-debt scandal was due to flaws in the algorithm used to calculate the debts. To have a properly functioning welfare safety net, there needs to be public scrutiny, and a misplaced deference to machines and algorithms suffocated the attention that was needed.   

These examples illustrate the interplay between AI and our attention, but they also show that human attention has a broader meaning than just being the efficient channelling of information. In both cases, attention is a moral act, directed towards care for others. There are many other ways algorithms interact with our attention – how social media is optimised to keep us scrolling, how chatbots are being touted as a solution to loneliness among the elderly, but also how translation apps help break language barriers. 

Algorithms are not the first thing to get in the way of our attention, and keeping our attention on the right things has always been a problem. One of the best stories about attention and noticing other people is Jesus’ parable of the Good Samaritan. A man lies badly beaten on the side of the road after a robbery. Several respectable people walk past without attending to the man. A stranger stops. His people and the injured man’s people are bitter enemies. Despite this, he generously attends to the wounded stranger. He risks the danger of stopping – perhaps the injured man will attack him? He then tends the man’s wounds and uses his money to pay for an indefinite stay in a hotel. 

This is the true model of attention. Risky, loving “noticing” which is action as much as intellect. A model of attention better than even the best neuroscientist or programmer could come up with, one modelled by God himself. In this story, the stranger, the Good Samaritan, is Jesus, and we all sit wounded and in need of attention. 

But not only this, we are born to imitate the Good Samaritan’s attention to others. Just as we can receive God’s love, we can also attend to the needs of others. This mirrors our relationship to artificial intelligence, just as our AI toys are conduits of our attention, we can be conduits of God’s perfect loving attention. This is what our attention is really for, and if we remember this while being prudent about the dangers of technology, then we might succeed in elevating our attention-inspired tools to make AI an amplifier of real attention. 

Join with us - Behind the Seen

Seen & Unseen is free for everyone and is made possible through the generosity of our amazing community of supporters.

If you’re enjoying Seen & Unseen, would you consider making a gift towards our work?

Alongside other benefits (book discounts etc.), you’ll receive an extra fortnightly email from me sharing what I’m reading and my reflections on the ideas that are shaping our times.

Graham Tomlin

Editor-in-Chief

Article
AI
Culture
Generosity
Psychology
Virtues
5 min read

AI will never codify the unruly instructions that make us human

The many exceptions to the rules are what make us human.
A desperate man wearing 18th century clothes holds candlesticks
Jean Valjean and the candlesticks, in Les Misérables.

On average, students with surnames beginning in the letters A-E get higher grades than those who come later in the alphabet. Good looking people get more favourable divorce settlements through the courts, and higher payouts for damages. Tall people are more likely to get promoted than their shorter colleagues, and judges give out harsher sentences just before lunch. It is clear that human judgement is problematically biased – sometimes with significant consequences. 

But imagine you were on the receiving end of such treatment, and wanted to appeal your overly harsh sentence, your unfair court settlement or your punitive essay grade: is Artificial Intelligence the answer? Is AI intelligent enough to review the evidence, consider the rules, ignore human vagaries, and issue an impartial, more sophisticated outcome?  

In many cases, the short answer is yes. Conveniently, AI can review 50 CVs, conduct 50 “chatbot” style interviews, and identify which candidates best fit the criteria for promotion. But is the short and convenient answer always what we want? In their recent publication, As If Human: Ethics and Artificial Intelligence, Nigel Shadbolt and Roger Hampson discuss research which shows that, if wrongly condemned to be shot by a military court but given one last appeal, most people would prefer to appeal in person to a human judge than have the facts of their case reviewed by an AI computer. Likewise, terminally ill patients indicate a preference for doctor’s opinions over computer calculations on when to withdraw life sustaining treatment, even though a computer has a higher predictive power to judge when someone’s life might be coming to an end. This preference may seem counterintuitive, but apparently the cold impartiality—and at times, the impenetrability—of machine logic might work for promotions, but fails to satisfy the desire for human dignity when it comes to matters of life and death.  

In addition, Shadbolt and Hampson make the point that AI is actually much less intelligent than many of us tend to think. An AI machine can be instructed to apply certain rules to decision making and can apply those rules even in quite complex situations, but the determination of those rules can only happen in one of two ways: either the rules must be invented or predetermined by whoever programmes the machine, or the rules must be observable to a “Large Language Model” AI when it scrapes the internet to observe common and typical aspects of human behaviour.  

The former option, deciding the rules in advance, is by no means straightforward. Humans abide by a complex web of intersecting ethical codes, often slipping seamlessly between utilitarianism (what achieves the most amount of good for the most amount of people?) virtue ethics (what makes me a good person?) and theological or deontological ideas (what does God or wider society expect me to do?) This complexity, as Shadbolt and Hampson observe, means that: 

“Contemporary intellectual discourse has not even the beginnings of an agreed universal basis for notions of good and evil, or right and wrong.”  

The solution might be option two – to ask AI to do a data scrape of human behaviour and use its superior processing power to determine if there actually is some sort of universal basis to our ethical codes, perhaps one that humanity hasn’t noticed yet. For example, you might instruct a large language model AI to find 1,000,000 instances of a particular pro-social act, such as generous giving, and from that to determine a universal set of rules for what counts as generosity. This is an experiment that has not yet been done, probably because it is unlikely to yield satisfactory results. After all, what is real generosity? Isn’t the truly generous person one who makes a generous gesture even when it is not socially appropriate to do so? The rule of real generosity is that it breaks the rules.  

Generosity is not the only human virtue which defies being codified – mercy falls at exactly the same hurdle. AI can never learn to be merciful, because showing mercy involves breaking a rule without having a different rule or sufficient cause to tell it to do so. Stealing is wrong, this is a rule we almost all learn from childhood. But in the famous opening to Les Misérables, Jean Valjean, a destitute convict, steals some silverware from Bishop Myriel who has provided him with hospitality. Valjean is soon caught by the police and faces a lifetime of imprisonment and forced labour for his crime. Yet the Bishop shows him mercy, falsely informing the police that the silverware was a gift and even adding two further candlesticks to the swag. Stealing is, objectively, still wrong, but the rule is temporarily suspended, or superseded, by the bishop’s wholly unruly act of mercy.   

Teaching his followers one day, Jesus stunned the crowd with a catalogue of unruly instructions. He said, “Give to everyone who asks of you,” and “Love your enemies” and “Do good to those who hate you.” The Gospel writers record that the crowd were amazed, astonished, even panicked! These were rules that challenged many assumptions about the “right” way to live – many of the social and religious “rules” of the day. And Jesus modelled this unruly way of life too – actively healing people on the designated day of rest, dining with social outcasts and having contact with those who had “unclean” illnesses such as leprosy. Overall, the message of Jesus was loud and clear, people matter more than rules.  

AI will never understand this, because to an AI people don’t actually exist, only rules exist. Rules can be programmed in manually or extracted from a data scrape, and one rule can be superseded by another rule, but beyond that a rule can never just be illogically or irrationally broken by a machine. Put more simply, AI can show us in a simplistic way what fairness ought to look like and can protect a judge from being punitive just because they are a bit hungry. There are many positive applications to the use of AI in overcoming humanity’s unconscious and illogical biases. But at the end of the day, only a human can look Jean Valjean in the eye and say, “Here, take these candlesticks too.”   

Celebrate our 2nd birthday!

Since Spring 2023, our readers have enjoyed over 1,000 articles. All for free. 
This is made possible through the generosity of our amazing community of supporters.

If you enjoy Seen & Unseen, would you consider making a gift towards our work?

Do so by joining Behind The Seen. Alongside other benefits, you’ll receive an extra fortnightly email from me sharing my reading and reflections on the ideas that are shaping our times.

Graham Tomlin
Editor-in-Chief