Article
AI
Culture
5 min read

What AI needs to learn about dying and why it will save it

Those programming truthfulness can learn a lot from mortality.

Andrew Steane has been Professor of Physics at the University of Oxford since 2002, He is the author of Faithful to Science: The Role of Science in Religion.

An angel of death lays a hand of a humanioid robot that has died amid a data centre
A digital momento mori.
Nick Jones/midjourney.ai

Google got itself into some unusual hot water in recently when its Gemini generative AI software started putting out images that were not just implausible but downright unethical. The CEO Sundar Pichai has taken the situation in hand and I am sure it will improve. But before this episode it was already clear that currently available chat-bots, while impressive, are capable of generating misleading or fantastical responses and in fact they do this a lot. How to manage this? 

Let’s use the initials ‘AI’ for artificial intelligence, leaving it open whether or not the term is entirely appropriate for the transformer and large language model (LLM) methods currently available. The problem is that the LLM approach causes chat-bots to generate both reasonable and well-supported statements and images, and also unsupported and fantastical (delusory and factually incorrect) statements and images, and this is done without signalling to the human user any guidance in telling which is which. The LLMs, as developed to date, have not been programmed in such a way as to pay attention to this issue. They are subject to the age-old problem of computer programming: garbage in, garbage out

If, as a society, we advocate for greater attention to truthfulness in the outputs of AI, then software companies and programmers will try to bring it about. It might involve, for example, greater investment in electronic authentication methods. An image or document will have to have, embedded in its digital code, extra information serving to authenticate it by some agreed and hard-to-forge method. In the 2002 science fiction film Minority Report an example of this was included: the name of a person accused of a ‘pre-crime’ (in the terminology of the film) is inscribed on a wooden ball, so as to use the unique cellular structure of a given piece of hardwood as a form of data substrate that is near impossible to duplicate.  

The questions we face with AI thus come close to some of those we face when dealing with one another as humans. 

It is clear that a major issue in the future use of AI by humans will be the issue of trust and reasonable belief. On what basis will we be able to trust what AI asserts? If we are unable to check the reasoning process in a result claimed to be rational, how will be able to tell that it was in fact well-reasoned? If we only have an AI-generated output as evidence of something having happened in the past, how will we know whether it is factually correct? 

Among the strategies that suggest themselves is the use of several independent AIs. If they are indeed independent and all propose the same answer to some matter of reasoning or of fact, then there is a prima facie case for increasing our degree of trust in the output. This will give rise to the meta-question: how can we tell that a given set of AIs are in fact independent? Perhaps they all were trained on a common faulty data set. Or perhaps they were able to communicate with each other and thus influence each other.  

The questions we face with AI thus come close to some of those we face when dealing with one another as humans. We know humans in general are capable of both ignorance and deliberate deception. We manage this by building up degrees of trust based on whether or not people show behaviours that suggest they are trustworthy. This also involves the ability to recognize unique individuals over time, so that a case for trustworthiness can be built up over a sequence of observations. We also need to get a sense of one another's character in more general ways, so that we can tell if someone is showing a change in behaviour that might signal a change in their degree of trustworthiness. 

In order to earn our trust, an AI too will have to be able to suffer and, perhaps, to die. 

Issues of trust and of reasonable belief are very much grist to the mill of theology. The existing theological literature may have much that can be drawn upon to help us in this area. An item which strikes me as particularly noteworthy is the connection between suffering and loss and earning of trust, and the relation to mortality. In brief, a person you can trust is one who has ventured something of themselves on their pronouncements, such that they have something to lose if they prove to be untrustworthy. In a similar vein, a message which is costly to the messenger may be more valuable than a message which costs the messenger nothing. They have already staked something on their message. This implies they are working all the harder to exert their influence on you, for good or ill. (You will need to know them in other ways in order to determine which of good or ill is their intention.)  

Mortality brings this issue of cost to a point of considerable sharpness. A person willing to die on behalf of what they claim certainly invests a lot in their contribution. They earn attention. It is not a guarantee of rationality or factual correctness, but it is a demonstration of commitment to a message. It signals a sense of importance attached to whatever has demanded this ultimate cost. Death becomes a form of bearing witness.  

A thought-provoking implication of the above is that in order to earn our trust, an AI too will have to be able to suffer and, perhaps, to die. 

In the case of human life, even if making a specific claim does not itself lead directly to one's own death, the very fact that we die lends added weight to all the choices we make and all the actions we take. For, together, they are our message and our contribution to the world, and they cannot be endlessly taken back and replaced. Death will curtail our opportunity to add anything else or qualify what we said before. The things we said and did show what we cared about whether we intended them to or not. This effect of death on the weightiness of our messages to one another might be called the weight of mortality. 

In order for this kind of weight to become attached to the claims an AI may make, the coming death has to be clearly seen and understood beforehand by the AI, and the timescale must not be so long that the AI’s death is merely some nebulous idea in the far future. Also, although there may be some hope of new life beyond death it must not be a sure thing, or it must be such that it would be compromised if the AI were to knowingly lie, or fail to make an effort to be truthful. Only thus can the pronouncements of an AI earn the weight of mortality. 

For as long as AI is not imbued with mortality and the ability to understand the implications of its own death, it will remain a useful tool as opposed to a valued partner. The AI you can trust is the AI reconciled to its own mortality. 

Article
AI
Culture
Generosity
Psychology
Virtues
5 min read

AI will never codify the unruly instructions that make us human

The many exceptions to the rules are what make us human.
A desperate man wearing 18th century clothes holds candlesticks
Jean Valjean and the candlesticks, in Les Misérables.

On average, students with surnames beginning in the letters A-E get higher grades than those who come later in the alphabet. Good looking people get more favourable divorce settlements through the courts, and higher payouts for damages. Tall people are more likely to get promoted than their shorter colleagues, and judges give out harsher sentences just before lunch. It is clear that human judgement is problematically biased – sometimes with significant consequences. 

But imagine you were on the receiving end of such treatment, and wanted to appeal your overly harsh sentence, your unfair court settlement or your punitive essay grade: is Artificial Intelligence the answer? Is AI intelligent enough to review the evidence, consider the rules, ignore human vagaries, and issue an impartial, more sophisticated outcome?  

In many cases, the short answer is yes. Conveniently, AI can review 50 CVs, conduct 50 “chatbot” style interviews, and identify which candidates best fit the criteria for promotion. But is the short and convenient answer always what we want? In their recent publication, As If Human: Ethics and Artificial Intelligence, Nigel Shadbolt and Roger Hampson discuss research which shows that, if wrongly condemned to be shot by a military court but given one last appeal, most people would prefer to appeal in person to a human judge than have the facts of their case reviewed by an AI computer. Likewise, terminally ill patients indicate a preference for doctor’s opinions over computer calculations on when to withdraw life sustaining treatment, even though a computer has a higher predictive power to judge when someone’s life might be coming to an end. This preference may seem counterintuitive, but apparently the cold impartiality—and at times, the impenetrability—of machine logic might work for promotions, but fails to satisfy the desire for human dignity when it comes to matters of life and death.  

In addition, Shadbolt and Hampson make the point that AI is actually much less intelligent than many of us tend to think. An AI machine can be instructed to apply certain rules to decision making and can apply those rules even in quite complex situations, but the determination of those rules can only happen in one of two ways: either the rules must be invented or predetermined by whoever programmes the machine, or the rules must be observable to a “Large Language Model” AI when it scrapes the internet to observe common and typical aspects of human behaviour.  

The former option, deciding the rules in advance, is by no means straightforward. Humans abide by a complex web of intersecting ethical codes, often slipping seamlessly between utilitarianism (what achieves the most amount of good for the most amount of people?) virtue ethics (what makes me a good person?) and theological or deontological ideas (what does God or wider society expect me to do?) This complexity, as Shadbolt and Hampson observe, means that: 

“Contemporary intellectual discourse has not even the beginnings of an agreed universal basis for notions of good and evil, or right and wrong.”  

The solution might be option two – to ask AI to do a data scrape of human behaviour and use its superior processing power to determine if there actually is some sort of universal basis to our ethical codes, perhaps one that humanity hasn’t noticed yet. For example, you might instruct a large language model AI to find 1,000,000 instances of a particular pro-social act, such as generous giving, and from that to determine a universal set of rules for what counts as generosity. This is an experiment that has not yet been done, probably because it is unlikely to yield satisfactory results. After all, what is real generosity? Isn’t the truly generous person one who makes a generous gesture even when it is not socially appropriate to do so? The rule of real generosity is that it breaks the rules.  

Generosity is not the only human virtue which defies being codified – mercy falls at exactly the same hurdle. AI can never learn to be merciful, because showing mercy involves breaking a rule without having a different rule or sufficient cause to tell it to do so. Stealing is wrong, this is a rule we almost all learn from childhood. But in the famous opening to Les Misérables, Jean Valjean, a destitute convict, steals some silverware from Bishop Myriel who has provided him with hospitality. Valjean is soon caught by the police and faces a lifetime of imprisonment and forced labour for his crime. Yet the Bishop shows him mercy, falsely informing the police that the silverware was a gift and even adding two further candlesticks to the swag. Stealing is, objectively, still wrong, but the rule is temporarily suspended, or superseded, by the bishop’s wholly unruly act of mercy.   

Teaching his followers one day, Jesus stunned the crowd with a catalogue of unruly instructions. He said, “Give to everyone who asks of you,” and “Love your enemies” and “Do good to those who hate you.” The Gospel writers record that the crowd were amazed, astonished, even panicked! These were rules that challenged many assumptions about the “right” way to live – many of the social and religious “rules” of the day. And Jesus modelled this unruly way of life too – actively healing people on the designated day of rest, dining with social outcasts and having contact with those who had “unclean” illnesses such as leprosy. Overall, the message of Jesus was loud and clear, people matter more than rules.  

AI will never understand this, because to an AI people don’t actually exist, only rules exist. Rules can be programmed in manually or extracted from a data scrape, and one rule can be superseded by another rule, but beyond that a rule can never just be illogically or irrationally broken by a machine. Put more simply, AI can show us in a simplistic way what fairness ought to look like and can protect a judge from being punitive just because they are a bit hungry. There are many positive applications to the use of AI in overcoming humanity’s unconscious and illogical biases. But at the end of the day, only a human can look Jean Valjean in the eye and say, “Here, take these candlesticks too.”   

Celebrate our 2nd birthday!

Since Spring 2023, our readers have enjoyed over 1,000 articles. All for free. 
This is made possible through the generosity of our amazing community of supporters.

If you enjoy Seen & Unseen, would you consider making a gift towards our work?

Do so by joining Behind The Seen. Alongside other benefits, you’ll receive an extra fortnightly email from me sharing my reading and reflections on the ideas that are shaping our times.

Graham Tomlin
Editor-in-Chief